A - 6557

Reg. No.:....

Name:.....

Third Semester B.Tech. Degree Examination, October 2016 (2013 Scheme) 13.301: ENGINEERING MATHEMATICS – II (ABCEFHMNPRSTU)

Time: 3 Hours

Max. Marks: 100

John Cox Memorial CSI Institute of Technology
Kannammcola, Thiruvananthapuram
695011
PART — A

(Answer all questions. Each question carries 4 marks.)

- 1. Find the directional derivative of $z^2 + 2xy$ at (1, -1, 3) in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$.
- 2. Obtain the half range sine series of e^x in 0 < x < 1.

3. Find the Fourier sine transform of $F(x) = \begin{cases} \sin x & 0 \le x \le a \\ 0 & x > a \end{cases}$

John Cox Memorial CSI Institute of Technology Kannammcola, Thiruvananthapuram 655011

- 4. Obtain the partial differential equation by eliminating arbitrary constants from the relation $z = axe^y + \frac{1}{2}a^2e^{2y} + b$.
- State the assumptions involved in the derivation of one-dimensional wave equation.

PART-B

(Answer one full question from each Module. Each question carries 20 marks.)

Module - I

6. a) Determine F(r) so that the vector F(r) \vec{r} is solenoidal.

P.T.O.

- b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where 'C' is the circle $x^2 + y^2 = 9$ in the xy plane. If $\vec{F} = (2x y + z) \hat{i} + (x + y z^2) \hat{j} + (3x 2y + 4z) \hat{k}$.
- c) Using Gauss divergence theorem evaluate $\iint_s \vec{F} \cdot d\vec{s}$ where \vec{F} is $\vec{F} = (2xy + z) \hat{j} + y^2 \hat{j} (x + 3y) \hat{k}$ and 's' is the surface bounded by x = 0, y = 0, z = 0 and 2x + 2y + z = 6.
- 7. a) If 's' is a closed surface show that $\iint curl F$ nds = 0.
 - b) Using Green's theorem in a plane evaluate $\int_{c} (2x^2 y^2) dx + (x^2 + y^2) dy$ where 'C' is the boundary in the xy-plane of the area enclosed by the x-axis and semi-circle $x^2 + y^2 = 1$ in the upper half of the xy-plane.
 - c) Using Stoke's theorem evaluate $\int\limits_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = (2x + y 2z) \hat{i} + (2x 4y + z^2) \hat{j} + (x 2y z^2) \hat{k}$ and 'C' is the circle with centre (0, 0, 3) and radius 5 units in the plane z = 3.

Module - II

- 8. a) Expand x sinx as a Fourier series in $0 < x < 2\pi$.
 - b) Using Fourier integral show that $\int_{0}^{x} \frac{\cos x\lambda}{1+\lambda^{2}} = \frac{\pi}{2} e^{-x}, x \ge 0$
- 9. a) Obtain the Fourier series for $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ \sin x, & 0 \le x < \pi \end{cases}$ and deduce that $\frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \dots = \frac{\pi 2}{4}.$
 - b) Find the Fourier transform of $f(x) = \begin{cases} 1 x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ use it to evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \left(\frac{x}{2}\right) dx.$

Module - III

- 10. a) Using Charpit's method solve the partial diff. equation z = px + qy + pq.
 - b) Solve the partial differential equation $(D^2 2DD' + D'^2)z = e^{x+y}x^2y^2$.
- 11. a) Solve the partial differential equation $y^2p xyq = x (z 2y)$.
 - b) Solve the partial differential equation $(D^2 + {D'}^2) z = \sin 2x \sin 3y + 2\sin^2(x + y)$.

Module - IV

- 12. a) Solve the equation $\frac{\partial^2 z}{\partial x^2} = \frac{\partial z}{\partial y} + 2z$, by the method of separation of variables given that z = 0 and $\frac{\partial z}{\partial x} = 1 + e^{-3y}$ when x = 0.
 - b) A rod of length 20 cm has its ends A and B kept at 30°C and 90°C respectively until steady state conditions prevail. If the temperature at each end is suddenly reduced to 0°C and maintained so, find the temperature u (x, t) at a distance 'x' from A at time t.
- 13. a) A tightly stretched string of length 'l' has its ends x = 0 and x = l fixed. The point x = l/3 is drawn aside by a small distance h and released from rest at time t = 0, find y(x, t) at any subsequent time t.
 - b) A rod of length l is heated so that its end A and B are at zero temperature. If initially its temperature is given by $u = cx (l x) / l^2$. Find the temperature at time t.

